# SPARROW Surface Water Quality Workshop October 29-31, 2002 Reston, Virginia

Section 6. SPARROW Model Calibration



# Section 6. SPARROW Model Calibration Topics Considered

- The SPARROW model equation
- Specification of the model: sources, land-to-water and aquatic transport
- Nonlinear estimation of parameters
- Physical interpretation of parameters
- Evaluating the model error
- Model selection criteria
- SPARROW calibration/prediction software (existing)
   Fecal coliform example
- On-going enhancements to the code



### SPARROW Model Structure





### **SPARROW Model Equation**





### **SPARROW Model Equation**

### Mass-Balance Equation

Load 
$$_{i} = \left\{ \sum_{j \in J(i)} \left[ \sum_{n=1}^{N} S_{n,j} \beta_{n} \exp(-\alpha' Z_{j}) \right] \exp(-\delta' T_{i,j}) \right\} \exp(\epsilon_{i})$$

Stream
Load

Sources

Land-to-water Aquatic transport

Sources

transport

### Model structure is nonlinear:

- Additive sources (preserves mass balance)
- Multiplicative error (account for scale dependency of error)
- Exponential delivery terms



### **Model Equation**

How does the model structure differ from that of a conventional log-linear watershed regression model?

Nonlinear Model: 
$$Y = (X_1B_1 + X_2B_2) e^{\epsilon}$$
  
Log transform:  $ln(Y) = ln(X_1B_1 + X_2B_2) + \epsilon$ 

- Additive sources
- Mass balance
- Multiplicative error

Log-Linear Model: 
$$Y = (X_1^B_1 X_2^B_2) e^{\epsilon}$$
  
Log transform:  $In(Y) = B_1 In(X_1) + B_1 In(X_1) + \epsilon$ 

- Multiplicative sources
- No mass balance
- Multiplicative error



### **SPARROW Model Sources**

Load 
$$_{i} = \left\{ \sum_{j \in J(i)} \left[ \sum_{n=1}^{N} S_{n,j} \beta_{n} \exp(-\alpha' Z_{j}) \right] \exp(-\delta' T_{i,j}) \right\} \exp(\epsilon_{i})$$

Stream
Load

Sources

Land-to-water Aquatic transport

Sources

The stream transport transport

Sources

Sources

Sources

The stream transport

The stream transport

The stream transport

Sources



### **SPARROW Model Sources**

- Selection of sources determined by:
  - Research literature
  - Your expertise knowledge of the watershed
  - Data availability
- Diffuse Sources:
  - Extensive (land-use)
  - Intensive (mass based)
  - Mixed model (extensive and intensive)
- Point sources:
  - Contaminant mass (expect coefficient of 1.0 if response variable in same units and model properly specified)
  - Surrogates: sewered population; BOD; Flow
- Geographic dummy variables (e.g., unspecified sources)



### **SPARROW Landscape Transport**





### **SPARROW Model Landscape Transport**

### Selection of landscape variables:

- Variables should relate closely to landscape processes (e.g., runoff and drainage area integrate terrestrial and aquatic processing and water transport—not recommended)
- Water balance inputs and landscape-related loss components (precipitation; evapotranspiration)
- Soil properties (e.g., organic content, permeability, moisture content)
- Water flow paths (e.g., TOPMODEL overland flow; DEM overland routing)
- Management activities (e.g., tile drainage, conservation tillage practices; BMPs—stream riparian properties)
- Land use (e.g., wetlands—is it a source or sink?; measures of impervious surface or urbanization may confound source estimation)



### **SPARROW Model Landscape Transport**

### Landscape decay functions:

- Exponential function with imbedded negative sign: constrains values between zero and one:
  - -- All coefficients reported with positive sign
  - -- Negatively related variables:

$$e^{(-\beta_1 X_1 - \beta_2 X_2)}$$
 (e.g., soil permeability)

--Positively-related variables enter as reciprocal:

$$e^{(-\beta_1^{1/X}_1 - \beta_2^{1/X}_2)}$$
 (e.g., drainage density)

 Exponential function with log transformed variables – unconstrained:

$$e^{(\beta_1 \log(X_1) + \beta_2 \log(X_2))}$$

-- Coefficients reported with actual sign



### **SPARROW Model Landscape Transport**

### Landscape-source variable interactions:

 Values of diffuse-source coefficients not independent of delivery variables (interaction not separable in model)

Load<sub>i</sub> = 
$$\left\{ \sum_{j \in J(i)} \left[ \sum_{n=1}^{N} S_{n,j} \beta_{n} \exp(-\alpha' Z_{j}) \right] \exp(-\delta' T_{i,j}) \right\} \exp(\epsilon_{i})$$

- Standardize delivery variables (deviations from mean) to create more interpretable source coefficients expressed in relation to mean delivery—yields reflecting delivery to streams best metric to reflect geographic variations
- Commonly assume that diffuse sources subject to same landscape and aquatic decay (however, code can accommodate separate source-delivery interactions)



### **SPARROW Aquatic Transport**





### **Stream Transport**

### **Chemical Reaction Kinetics**

-The reaction rate is proportional to the concentration of the

reactants (law of mass action):

$$dc / dt = -kc^n$$

 $k = loss rate (T^{-1})$ 

c = concentration of a single reactant

n = reaction order



-Integrated equation for the <u>first-order model</u> (exponential depletion):

$$c = c_0 e^{-kt}$$



$$Flux = Flux_0 e^{-kt}$$

Loss rate (per unit water travel time) integrates multiple processes:

$$k = k_D + k_U + k_S$$

where,

 $k_D$  = denitrification rate (N only) ~ f[benthic areal rate(+), depth(-), concentration(+/-), temperature(+), organic matter(+), flow(-)]

 $k_U$  = biological uptake rate ~ f[algal density (+), light(+), depth(-), concentration(+), temperature(+)]

 $k_S$  = settling loss rate ~ f[particle settling velocity (+), depth(-), particulate bound fraction (+)] (particulate burial?)

t = water time of travel

Related Questions: time scale of steady state processes (multiple species model) and spatial scaling factors

Depth (streamflow) theoretically important spatial scaling factor affecting nutrient loss rate:

$$Flux = Flux_0 e^{-k_n t}$$

where, n = flow class defined according to mean streamflow



SPARROW
Estimates of Total
Nitrogen Loss vs.
Channel Depth



### Approach for defining flow classes:

- Use a few integer factor and order of magnitude separations
- -Start simple with 2 to 3 flow classes
- -Evaluate final selections with continuous flow functions



SPARROW
Estimates of Total
Nitrogen Loss vs.
Channel Depth



Per unit time (day-1) rate: Flux = Flux<sub>0</sub>  $e^{-k}$ <sup>t</sup>

Per unit channel length (km<sup>-1</sup>) rate: Flux = Flux<sub>0</sub>  $e^{-k'}$ <sub>n</sub> Flux = Flux<sub>0</sub>  $e^{-k'}$ <sub>n</sub>

### Approaches to obtaining day-1 rate:

- Post-conversion:  $km^{-1}$  to day<sup>-1</sup> rate using available estimates of mean stream velocity ( $k = k'^*$  V) for comparison with literature values
- Pre-conversion: Stream morphological / hydrology studies (e.g., Leopold and Maddock, 1953; Jobson, 1996; Jowett, 1998) can be used to estimate time-of-travel for individual reaches based on streamflow

### Obtaining estimates of channel depth:

e.g., Leopold and Maddock, 1953; Depth = 0.2612 Q 0.3966



### **Nutrient Transport in Reservoirs/Lakes**

### **Empirical mass-balance models:**

- Vollenweider, 1969
  - Phosphorus: Reckhow and Chapra, 1983
  - Nitrogen: Kelly et al. 1987; Molot & Dillon, 1993
- Steady state, well-mixed conditions
- Retention ~ f(depth, residence time, volume, areal water load, and apparent settling velocity—mass transfer coefficient)



### **Lake Retention of Nutrients**

Depth-Independent vs. Depth-Dependent Approaches

Constant Settling Velocity: Settling =  $v A_s c$ 

v = apparent settling velocity (units: L T<sup>-1</sup>)

 $A_s$  = lake surface area

c = concentration



First-order reaction (depth-dependent settling velocity):

Reaction =  $k_s$  V c

 $k_s = v / \text{depth}$ ; first-order settling rate (units=T<sup>-1</sup>)

V = volume (units=L<sup>3</sup>=depth\*surface area)

### Which is better?

- Equivalent mathematically
- Former more specific to process of flux across sediment-water interface
- Little empirical evidence in lake literature of detectable differences
- Availability of data may determine (volume vs. surface area)



### **Nutrient Transport in Reservoirs/Lakes**

### **SPARROW** estimated loss:

- Settling velocity coef. (constant in all water bodies)
- Areal water load (ratio of mean outflow to surface area)



SPARROW Estimates of Total Nitrogen Loss (75 Reservoirs of the Waikato River Basin, New Zealand)





# Lake Retention of Nutrients Current SPARROW Equation

From Mass-Balance Expression (Depth Independent) (e.g.,Reckhow and Chapra, 1983)

$$R = v / (v + q_s)$$

R = retention coefficient v = apparent settling velocity (L T<sup>-1</sup>)  $q_s$  = areal water load (outflow/surface area; L T<sup>-1</sup>)



# Lake Retention of Nutrients Previous SPARROW Equation

**Empirical Approximation to Mass-Balance Expression** 

(Alexander et al. Wat. Resour. Res., in press)

$$R = 1 - exp(-v/q_s)$$

R = retention coefficient v = apparent settling velocity (L T<sup>-1</sup>)  $q_s =$  areal water load (L T<sup>-1</sup>)



# Lake Retention of Nutrients Original SPARROW Equation

(Smith et al. Wat. Resour. Res., 1997)

$$R = 1 - exp(-kT)$$

R = retention coefficient

k = 1<sup>st</sup>-order decay rate

T = channel water travel time in reservoir reach



### SPARROW Model Structure





## SPARROW Model Equation Nonlinear Estimation of Parameters

Load<sub>i</sub> = 
$$\left\{ \sum_{j \in J(i)} \left[ \sum_{n=1}^{N} S_{n,j} \beta_{n} \exp(-\alpha' Z_{j}) \right] \exp(-\delta' T_{i,j}) \right\} \exp(\epsilon_{i})$$
Stream
Load
Source
Land-to-water
parameters
parameters

Error

### Model structure is nonlinear:

- Additive sources (preserves mass balance)
- Multiplicative error (account for scale dependency of error)
- Delivery terms



Nonlinear Regression can be viewed as an extension of linear regression analysis.

Uses <u>Gauss-Newton optimization method</u> (Levenberg-Marquardt conditioning parameters)—an iterative form of standard linear regression

- User selects starting values for the parameters.
- Method iteratively applies linear approximations of the nonlinear model in the vicinity of the initial and subsequent parameter values until the model <u>converges</u>.
- Model <u>converges</u> when changes in the parameter estimates are less than a preset threshold. The parameters minimize the <u>objective</u> <u>function</u>.
- Objective function is a measure of the fit between predicted and observed values (e.g., sum-of-squared residuals)



- The optimization routine uses a linear approximation of the nonlinear objective function.
- Parameter values are changed iteratively to locate the minimum value of the objective function.





### How do you pick starting values?

- Literature values
- Other SPARROW models or local models
- Guestimate remaining values if lack information

### Model convergence:

- If model well conditioned, only exceedingly large differences between starting and final values will be problematic
- Should test the convergence of final model for stability (selection of global rather than local minima) by changing starting values by a large amount
- SPARROW convergence problems often related to data errors; problems can occur when attempt to estimate too many parameters for certain functions (e.g., reservoir decay)



### Model Iterations of Fecal Coliform Model

Model 1: Starting values near final estimates (33 iterations)

Model 2: Starting values changed by 2 orders magnitude (aquatic decays by 1 order magnitude) – (27 iterations)



Final parameter estimates identical for two models



### Check if converged model reasonable:

- Do the parameter estimates have the correct sign?
- Are the parameters and standard errors statistically significant?
  - t-statistics: t = b<sub>j</sub> / se(b<sub>j</sub>)
  - tests of parameter significance:
    - t values approximate (only asymptotically valid)
    - strict adherence to α level not recommended
    - insignificant parameters: "lack of effect" vs. "lack of power"





# Lack of Power vs. Lack of Fit

Possible Interpretations of a Test That Fails to Reject Ho (e.g., p>0.05)

From: Johnson, 1999, J Wildl. Manage., v. 63



### Check if converged model reasonable:

- Do the parameter estimates have the correct sign?
- Are the parameters and standard errors statistically significant?
  - t-statistics: t = b<sub>j</sub> / se(b<sub>j</sub>)
  - tests of parameter significance:
    - t values approximate (only asymptotically valid)
    - strict adherence to α level not recommended
    - insignificant parameters: "lack of effect" vs. "lack of power"
- Do the parameters have physical significance?

Literature comparisons: catchment yields by land use, per capita waste loads, point-source coef., in-stream decay, reservoir settling rates



# Verification of Estimated Diffuse Source Coefficients New Zealand SPARROW







## NATIONAL & REGIONAL SPARROW POINT-SOURCE COEFFICIENTS





### SPARROW Estimates of Nitrogen Loss in Reservoirs

Mean & Range for Nitrogen Settling Velocity

Rates for Lakes & Reservoirs\*



#### SPARROW Models

U.S. (1992 preliminary)

#### N.Z. Waikato

Alexander et al. (in press)

N.C. Neuse Coastal

#### LITERATURE DATA

#### Danish Lakes

Windolf et al. (1996)

#### S. Ontario Lakes

Molot & Dillon (1993)

Kelly et al. (1987)

Kelly et al. (1990)

Dillon & Molot (1990)

#### Lake Superior

Bennett (1986)

#### Common Attributes:

High N inputs Mod. to high N:P ratios Denitrification dominated

\* Settling rates > 25 m yr<sup>-1</sup> - algal dominated; low N:P ratios (Kelly et al. 1990)



# National and Regional SPARROW Models





### **Nonlinear Parameter Estimation**

#### Check if converged model reasonable:

- Do the parameter estimates have the correct sign?
- Are the parameters and standard errors statistically significant?
  - t-statistics: t = b<sub>j</sub> / se(b<sub>j</sub>)
  - tests of parameter significance:
    - t values approximate (only asymptotically valid)
    - strict adherence to α level not recommended
    - insignificant parameters: "lack of effect" vs. "lack of power"
- Do the parameters have physical significance?
   Literature comparisons: catchment yields by land use, per capita waste loads, point-source coef., in-stream decay, reservoir settling rates
- Are the parameters correlated?



## Parameter Correlation: Multicollinearity

#### What's the problem?

- Coefficient signs unreasonable
- Two variables describing the same process have different signs and insignificant coefficients

#### Metrics to detect it:

- Parameter correlation matrix very high correlations (>0.95)
- Variance Inflation Factors (VIFs) measure of correlation among all explanatory variables (>10 a problem)

#### How do you fix it?

- Center data fix for polynomial variables
- Simplify model
- Remove parameter
- Combine data (equating two parameters)



### **Nonlinear Parameter Estimation**

#### Model convergence can also be assisted by:

- Log transformations of data and parameters
   May be needed to satisfy residual assumptions (linearity, constant variance, normally distributed)
- <u>Scaling of data</u> better conditioning of the derivative matrix if reduce large differences in coefficient values:

$$Y = b0 \exp(-b1 X)$$

If expect b0=100 and b1=0.001, force coefficients to be approx 1.0:

$$Y = 100 b0 exp(-b1 X/1000)$$



#### **SPARROW Error Term**





 Residuals should vary randomly – no evidence of systematic patterns that may indicate correlation or explanatory variables missing from the model





## NC SPARROW land cover-based regression model

| R2                               | 0.93           |                      |
|----------------------------------|----------------|----------------------|
| MSE                              | 0.22           |                      |
| TN sources                       |                |                      |
| Point sources (MT/1992)          | Parameter 0.85 | p-value <b>0.006</b> |
| Agr. Land area (MT/km²)          | <b>5.9</b>     | 0.09                 |
| Non-agr land area (MT/km²)       | 1.79           | 0.08                 |
| Land delivery variable           |                |                      |
| Soil hydrologic group            | 4.13           | 0.001                |
| Aquatic loss                     |                |                      |
| Small stream (km <sup>-1</sup> ) | 0.08           | 0.02                 |
| Large stream (km <sup>-1</sup> ) | 0.002          | 0.35                 |
| Reservoir (m/yr)                 | 16.4           | 0.008                |



#### **Spatial distribution of model residuals**





Assumptions affecting accuracy of parameter standard errors:

Variance of the residuals should be constant (homoscedastic)



<u>Solution</u>: Weighting of residuals for measurement error (e.g., load estimation error) and model variance—assumes error-variance relations can be defined.



Fecal Coliform Residual Plot 305 NASQAN sites, records 1978-92





Residuals are normally distributed

Fecal Coliform Residual Probability Plot 305 NASQAN sites, records 1978-92





#### **Outliers**

"I like SPARROW's ability to identify inaccuracies in monitoring data...the model is right and the data are wrong."

-Graham McBride, NIWA, NZ

Caused by data errors or model mis-specification



#### NZ Waikato TN Model

Horticulture prominent in the watershed— source unspecified in the model



#### **How Detect Outliers in Multi-Dimensional Space?**

- <u>Leverage</u> (hat matrix)—measure of outlier in at least one of the explanatory variables
  - --High leverage for value > 3p / n, where p=#parameters; n=# observations



- Influence statistics

   (outliers in the response variable):
- --Standardized residuals (standard deviation units)
  - --Cook's D



### Significance of model parameters – nested models

- Individual parameters t statistics (and associated p values)
- Multiple parameters F test

The test statistic is 
$$F = \frac{(SSE_s - SSE_c) / (df_s - df_c)}{(SSE_c / df_c)} \qquad \text{where } (df_s - df_c) = m-k.$$



### Significance of model parameters – nested models

- Individual parameters t statistics (and associated p values)
- Multiple parameters F test

The test statistic is 
$$F = \frac{(SSE_S - SSE_C) \ / \ (df_S - df_C)}{(SSE_C \ / \ df_C)} \qquad \text{where } (df_S - df_C) = m-k.$$

SSy

SSR (signal)

SSE (noise)

```
Total sum of squares = Treatment sum of squares (overall variation) = (group means – overall mean) + (variation within groups)
\sum_{j=1}^{k} \sum_{i=1}^{n_j} (y_{ij} - \overline{y})^2 = \sum_{j=1}^{k} n_j (\overline{y}_j - \overline{y})^2 + \sum_{j=1}^{k} \sum_{i=1}^{n_j} (y_{ij} - \overline{y}_j)^2
```



### Overall model fit

- <u>Lowest MSE</u> (Mean Square Error)—declines with increasing # parameters: MSE = SSE / (n-p)
- <u>Highest R-squared</u>—increases with increasing # parameters

$$R^2 = 1 - (SSE / SS_y)$$

where,  $SS_y$  = total sum of squares of the regression equation SSE = sum of square error

 Highest Adjusted R-squared (adjusted for # parameters; relatively insensitive when n>>p):

$$R^2 = 1 - [(n-1) SSE] / [(n-p) SS_y]$$



### Overall model fit

- Lowest Mallow's Cp (Cp adjusted for # parameters)
- Lowest PRESS statistic
- Your professional judgement

$$Cp = p + \frac{(n-p) \cdot (s_p^2 - \hat{s}^2)}{\hat{s}^2}$$

where Sp = MSE of the p parameter model s2 = best estimate of the "true" error (lowest MSE of all models)



# SPARROW Model Calibration Summary

#### Evaluation of model structure and fit

- 1. Check parameter estimates for statistical and physical significance, correct sign, correlation, and stability
- 2. Check residual plots for outliers, systematic patterns, homoscedasticity, normality, and inspect mapped residuals
- 3. Check overall model fit (adjusted R-squared, MSE, Mallow's Cp)



#### **Evolution of SPARROW Calibration Software**



#### SPARROW 2.0



#### SAS calibration / prediction software

- New revisions completed and on-going to national code
- Document and support single source of software maintained by the national SPARROW group

GIS methods and software –variety of approaches—will likely continue

#### Preprocessing steps:

- SPARROW explanatory variables identified by reach using GIS
- Network navigation parameters (hydrologic order of reaches, from- and to-nodes, diversion fraction)
- Assembly of SAS data set (DATA1)
  - Compiles reach-level data from GIS processing in single dataset
- SAS model procedure for calibration and prediction
  - Initial parameter setup (modify variable lists)
  - Data block
    - Final calculations
    - Data screening (e.g., stations)
  - IML procedures (landscape and aquatic decay equations)
  - Output parameters and predictions



# Fecal Coliform Bacteria Example Model Building Exercise

#### Possible sources

Human and animal sources—wastewater, urban runoff, and septic systems, livestock populations (confined feeding operations, unconfined), background for other animals (geese, birds, etc.)

#### Loss rate for total coliform bacteria:

$$k_T = k_B + k_R + k_S$$

where,

 $k_B$  = base mortality rate (fresh waters) = 0.8 \* 1.07 T-20

k<sub>R</sub> = solar radiation effect ~ f[light energy (+), depth(-), particulate matter (-)]

k<sub>S</sub> = settling loss rate ~ f[particle settling velocity (+), depth(-),
fraction of attached bacteria(+)]



## **SPARROW Fecal Coliform Models**

## **Intensive-source model:**

Livestock wastes (confined and unconfined), Sewered population, Urban land, Other lands

## Land-use (extensive-source) model:

Agricultural lands, Sewered population, Urban land, Other lands



1. Define response (dependent) and source variables

```
/* Specify all the variable lists. */

/* Dependent variable */
%let depvar = load;

/* Source variables */
%let srcvar = SEWERPOP RESLAND CONF UNCONF URBAN;

/* Source variable coefficients */
%let bsrcvar = BPOINT BRESLAND BCONF BUNCONF BURBAN;
```

SEWERPOP = sewered population

CONF = confined feeding wastes (kg N)

UNCONF = unconfined feeding wastes (kg N)

URBAN = urban land area (km2)

RESLAND = other land (forest, barren, wetlands, shrub)

area (km2)



2. Define landscape delivery variables (constrained exponential function)

```
/* Delivery variables */
%let dlwar = aperm aidrainden ;

/* Delivery variable coefficients */
%let bdlwar = bperm bdrainden ;
```

APERM = Soil permeability
(mean adjusted)

AIDRAINDEN = Drainage density
(reciprocal mean adjusted)

Adjusted delivery variables (user prompt in future version)

```
/* adjust land-to-water delivery factors by mean */
PROC MEANS DATA=indata;
VAR perm idrainden;
OUTPUT OUT=mean_ltw MEAN= xperm xdrainden;
RUN;

data indata; if _n_ = 1 then set mean_ltw; set indata;
aperm = perm - xperm;
aidrainden = idrainden - xdrainden;
run;
```

PERM = Soil permeability IDRAINDEN = Drainage density (reciprocal)



#### 3. Define aquatic decay variables

```
/* Decay variables */
%let decvar = rchtot1 rchtot2 rchtot3;

/* Decay variable coefficients */
%let bdecvar = brchtot1 brchtot2 brchtot3;

/* Reservoir variables */
%let resvar = iresload;

/* Reservoir variable coefficients */
%let bresvar = bresload;
```

```
RCHTOT1 = Reach TOT (days; flow <100cfs)
RCHTOT2 = Reach TOT (days; flow 100 to 500 cfs)
RCHTOT3 = Reach TOT (days; flow >500cfs)

IRESLOAD = Areal hydraulic load (reciprocal; yr/m)
for reservoir outlets
```

#### Create flow interval variables in data section

```
RCHTOT1 = (meanq <= 100) * (rchtype = 0) * RCHTOT;
RCHTOT2 = (100 < meanq <= 500) * (rchtype = 0) * RCHTOT;
RCHTOT3 = (meanq > 500) * (rchtype = 0) * RCHTOT;

if RHLOAD ^= . and rchtype = 2 then iresload = RHLOAD;
else iresload = 0;
```

```
MEANQ = mean streamflow (cfs)

RCHTYPE = reach type code

0=river reach

1=reservoir reach

2=reservoir outlet
```



4. Define delivery variable design matrix

#### **DLVDSGN** Code

0 = delivery not apply to this source

1 = delivery applies to this source

/\* Specify the delivery design matrix: each row is a different source (in the same order as they are listed in the srcvar statement); each column is a different delivery variable (in the same order as they are listed in the dlvvar statement). An element is either a 0 or 1. Element r,c is a 1 if source r uses delivery variable c. Otherwise, element r,c is 0. A space separates columns and a comma separates rows. \*/

%let dlvdsgn = 0 0, 1 1, 1 1, 1 1, 1 1;

Displayed sequence for DLVDSGN: 0 0 = sewered population for permeability and drainage density

1 1 = residual land area for permeability and drainage density ...etc.



#### 5. Select estimation and/or prediction execution mode

```
%let if_estimate = yes;
%let if_predict = yes; * Specify if predictions are to be made.;
%let if_adjust = no ; * Specify if the load predictions (decayed) are to be adjusted for actual loads at monitoring stations;
```

6. Define data set, hydrologic sorting variable, and parameter starting values



7. Define reach and station IDs and network navigation parameters (set once—no need to change)

```
/* Assign a list of column reference vectors */
%let makecol =
   jwaterid = %col(datalst,waterid) %str(;)
   jstatpk = %col(datalst,statpk) %str(;)
   jfnode = %col(datalst,fnode) %str(;)
   jtnode = %col(datalst,tnode) %str(;)
   jfrac = %col(datalst,frac) %str(;)
   jaiftran = %col(datalst,aiftran) %str(;)
```

WATERID = watershed / reach ID

STATPK = station ID

FNODE = reach upstream node

TNODE = reach downstream node

FRAC = reach diversion fraction

AIFTRAN = transport flag (1=transport reach)

```
/* Make list of variables to be read from the SAS indata data set and loaded
  into a matrix. Detect and remove duplicates. */
%let addlist = &depvar &srcvar &dlvvar &decvar &resvar &othvar;
%let datalst = waterid statpk tnode fnode frac aiftran;
```



FRAC - Fraction diversion value





7. Define reach and station IDs and network navigation parameters (set once—no need to change or transparent if use same names)

```
/* Assign a list of column reference vectors */
%let makecol =
   jwaterid = %col(datalst,waterid) %str(;)
   jstatpk = %col(datalst,statpk) %str(;)
   jfnode = %col(datalst,fnode) %str(;)
   jtnode = %col(datalst,tnode) %str(;)
   jfrac = %col(datalst,frac) %str(;)
   jaiftran = %col(datalst,aiftran) %str(;)
```

WATERID = watershed / reach ID STATPK = station ID FNODE = reach upstream node TNODE = reach downstream node FRAC = reach diversion fraction AIFTRAN = transport flag (1=transport reach)

```
/* Make list of variables to be read from the SAS indata data set and loaded
  into a matrix. Detect and remove duplicates. */
%let addlist = &depvar &srcvar &dlvvar &decvar &resvar &othvar;
%let datalst = waterid statpk tnode fnode frac aiftran;
```



#### INTENSIVE MODEL RESULTS: Fecal Coliform

305 NASQAN sites, records 1978-92

Sources reflect mean adjusted landscape variables

Coliform Flux (10<sup>-2</sup> Bcolonies yr<sup>-1</sup>)



Coliform Yield (10<sup>-2</sup> Bcolonies km<sup>-2</sup> yr<sup>-1</sup>)





#### INTENSIVE MODEL RESULTS: Fecal Coliform

305 NASQAN sites, records 1978-92

Sources reflect mean adjusted landscape variables

#### Residual Plot



#### **Probability Plot**





#### INTENSIVE MODEL RESULTS: Fecal Coliform

305 NASQAN sites, records 1978-92

Sources reflect mean adjusted landscape variables

| Non-linear Least Squares Results |           |           |                   |           |                          |          |                            |
|----------------------------------|-----------|-----------|-------------------|-----------|--------------------------|----------|----------------------------|
| N Obs DF M<br>305                | odel DF E |           | SSE<br>3903 1.867 |           | MSE R-Squ<br>7443 0.8071 | _        | R-Sq<br>)0574              |
|                                  | Parameter | Estimate  | Std Err           | t Value   | Pr >  t                  | Coeffic  | eient Units                |
| Sources                          |           |           |                   |           |                          |          |                            |
| Sewered Population               | BPOINT    | 8919.403  | 2958.4093         | 3.0149321 | 0.0027946                | 8,919/10 | 00 = 89.2 Bcol/person/yr   |
| Residual Land                    | BRESLAND  | 2045.9055 | 4741.886          | 0.4314539 | 0.6664545                | 20 Bcol/ | km2/yr (0.20 Bcol/ha/yr)   |
| Confined wastes                  | BCONF     | 324.97938 | 116.48886         | 2.7897894 | 0.0056188                | 3.25 Bco | l/kg N/yr                  |
| Unconfined wastes                | BUNCONF   | 177.07559 | 73.883056         | 2.3967009 | 0.0171679                | 1.77 Bco | l/kg N/yr                  |
| Urban land                       | BURBAN    | 3444100.3 | 2068444.4         | 1.6650678 | 0.0969645                |          | Scol/km2/yr<br>Scol/ha/yr) |
| Landscape loss                   |           |           |                   |           |                          |          |                            |
| Soil permeability                | BPERM     | 0.334435  | 0.0841099         | 3.976165  | 0.0000882                | h/cm     | (inverse relation)         |
| Drainage density                 | BDRAINDEN | 0.053385  | 0.0393925         | 1.3552088 | 0.1763913                | per km   | (positive relation)        |
| Aquatic loss                     |           |           |                   |           |                          |          |                            |
| Stream decay(<100cfs)            | BRCHTOT1  | 0.6485695 | 0.2210388         | 2.9341881 | 0.0036077                | per day  |                            |
| Stream decay(100-500cfs)         | BRCHTOT2  | 0.4942857 | 0.1846064         | 2.6775113 | 0.007834                 | per day  |                            |
| Stream decay(>500cfs)            | BRCHTOT3  | 0.1270183 | 0.0568133         | 2.2357144 | 0.026121                 | per day  |                            |
| Reservoir decay                  | BRESLOAD  | 78.995344 | 22.727153         | 3.4758134 | 0.0005861                | m/day    |                            |



#### EXTENSIVE (LAND-USE) MODEL RESULTS: Fecal Coliform

305 NASQAN sites, records 1978-92

Sources reflect mean adjusted landscape variables

#### Non-linear Least Squares Results

```
N Obs DF Model DF Error
                                            SSE
                                                      MSE Root MSE R-Square Adj R-Sq
               305
                                   295 573.11607 1.9427663 1.3938315 0.7987313 0.7925909
                         Parameter Estimate
                                              Std Err
                                                        t Value Pr > |t|
                                                                              Coefficient Units
Sources
Sewered Population
                        BPOINT
                                   9345.4095 3061.8093 3.0522507 0.0024781
                                                                            9.345/100 = 93.5 Bcol/person/vr
Cultivated Land
                        BAGRIC
                                   603793.17 185355.63 3.257485 0.0012552
                                                                            6,038 Bcol/km2/yr (60.4 Bcol/ha/yr)
Residual Land
                        BRESLAND
                                                                            68.7 Bcol/km2/yr (0.69 Bcol/ha/yr)
                                   6870.043 3741.5327 1.8361574 0.0673406
                                                                            42,514 Bcol/km2/yr (425.1 Bcol/ha/yr)
Urban land
                        BURBAN
                                   4251364.3 2457871.4 1.7296936 0.084731
Landscape loss
Soil permeability
                        BPERM
                                   0.2356181 0.0788437 2.9884218
                                                                   0.00304
                                                                           h/cm
                                                                                     (inverse relation)
Drainage density
                        BDRAINDEN 0.1459664 0.0786509 1.8558782 0.0644681 per km
                                                                                     (positive relation)
Aguatic loss
Stream decay(<100cfs)
                        BRCHTOT1
                                   0.6405845 0.2213565 2.8939041 0.0040886
                                                                            per day
Stream decay(100-500cfs) BRCHT0T2
                                   0.5339951 0.1996834 2.6742096 0.0079082
                                                                            per day
                        BRCHTOT3
Stream decay(>500cfs)
                                    0.126373 0.0601968 2.099331 0.0366373
                                                                            per dav
Reservoir decay
                        BRESLOAD
                                   70.624909 21.608323 3.2684123 0.0012094
                                                                            m/dav
```

Human fecal coliform intestinal bacteria = 730 Bcol/person/yr Cultivated land = NLCD pasture + row crops + fallow land + orchards



### **Land-Use Model**

## **Intensive-Use Model**

+/- 137%

| Sources Sewered population Urban land Other land Cultivated land | Bcol yr -1<br>93.5 person-1<br>425.1 ha-1<br>0.69 ha-1<br>60.4 ha-1 | Sources: Sewered pop. Urban land Other land Confined waste Unconfined waste | Bcol yr -1<br>89.2 person -1<br>344.0 ha-1<br>0.20 ha-1<br>3.25 kgN-1<br>1.77 kgN-1 |
|------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| ///////////////////////////////////////                          | o <u>ort:</u><br>(- coef.)<br>(+ coef.)                             | Land-to-Water Tran<br>Soil permeability<br>Drainage density                 | (- coef.)                                                                           |
| In-stream loss (day <sup>-1</sup> )<br>0.13, 0.53, 0.64          |                                                                     | In-stream loss (day 0.13, 0.49, 0.6                                         | <del></del> ///////////////////////////////////                                     |
| Reservoir loss (m yr1                                            | 70.6                                                                | Reservoir loss (m yr                                                        | <del>-1)</del> 79.0                                                                 |
| R-squared                                                        | 0.79                                                                | R-squared                                                                   | 0.80                                                                                |

Reach-accuracy

+/- 139%



Reach-accuracy

#### **SPARROW SAS Predictions**

1. Flux at end of reach from total drainage —

PLOAD\_"SOURCES"

Units=mass per time



|   | 🙀 predi | predict_load_lu3c5_update10.sas7bdat |                         |                |                           |              |              |              |  |
|---|---------|--------------------------------------|-------------------------|----------------|---------------------------|--------------|--------------|--------------|--|
|   |         | WATERID                              | PLOAD_TOTAL             | PLOAD_SEWERPOP | PLOAD_RESLAND             | PLOAD_CONF   | PLOAD_UNCONF | PLOAD_URBAN  |  |
|   | 1       | 1                                    | 121484650.0             | 66219466.197   | 12125206.853              | 5168037.222  | 3443474.063  | 34528465.718 |  |
|   | 2       | 2                                    | 120829611.6 67246411.49 |                | 12328268.739 4890852.6593 | 3240738.323  | 33123340.393 |              |  |
|   | 3       | 3                                    | 104455083.4             | 58110091.823   | 11945150.238              | 4126711.4436 | 2697056.243  | 27576073.743 |  |
| 1 | 4       | 4                                    | 34836662.65             | 11209250.91    | 12100062.211              | 955631.90257 | 410579.0838  | 10161138.549 |  |
|   | 5       | 5                                    | 33461.09717             | 8815.981905    | 14806.559819              | 4470.8141532 | 3177.512838  | 2190.2284615 |  |



#### **SPARROW SAS Predictions**

2. Flux delivered to end of reach w/o aquatic decay.

PLOAD\_ND\_TOTAL PLOAD\_ND\_"SOURCES"

Units=mass per time

Total mass removed in streams & reservoirs =

PLOAD\_ND\_TOTAL - PLOAD\_TOTAL

mass removed in stream = (PLOAD\_ND\_TOTAL

- PLOAD\_TOTAL) / PLOAD\_ND\_TOTAL \* 100



| pred | predict_load_lu3c5_update10.sas7bdat |                   |                  |               |                 |                |  |  |  |  |
|------|--------------------------------------|-------------------|------------------|---------------|-----------------|----------------|--|--|--|--|
|      | PLOAD_ND_TOTAL                       | PLOAD_ND_SEWERPOP | PLOAD_ND_RESLAND | PLOAD_ND_CONF | PLOAD_ND_UNCONF | PLOAD_ND_URBAN |  |  |  |  |
| 1    | 212308549.82                         | 96302794.235      | 28477245.55      | 13469327.827  | 8812938.0104    | 65246244.192   |  |  |  |  |
| 2    | 207354644.69                         | 95473289.756      | 28342708.098     | 12922726.18   | 8424455.3553    | 62191465.303   |  |  |  |  |
| 8    | 190271689.97                         | 85893850.93       | 27907222.722     | 12128509.75   | 7859987.0468    | 56482119.517   |  |  |  |  |
| 4    | 53201191.121                         | 14699176.151      | 21403030.922     | 2054432.0414  | 700102.92756    | 14344449.079   |  |  |  |  |
| 5    | 33853.632403                         | 8919.4030041      | 14980.256942     | 4523.2616876  | 3214.7885356    | 2215.9222342   |  |  |  |  |



# SPARROW Fecal Coliform Model Aquatic Loss (305 NASQAN sites)





#### **SPARROW SAS Predictions**

3. Flux delivered to reach from incremental reach catchment

INC\_TOTAL INC\_"SOURCES"

Units = mass per time

|   | predict_load_lu3c5_update10.sas7bdat |           |              |              |             |             |           |  |
|---|--------------------------------------|-----------|--------------|--------------|-------------|-------------|-----------|--|
|   |                                      | INC_TOTAL | INC_SEWERPOP | INC_RESLAND  | INC_CONF    | INC_UNCONF  | INC_URBAN |  |
| ı | 1                                    | 117402.79 | 53516.418025 | 1727.7574909 | 9987.6667   | 7098.469835 | 45072.478 |  |
| ı | 2                                    | 2690867.4 | 847343.28539 | 3413.5396544 | 18282.879   | 12994.07299 | 1808833.6 |  |
| ı | 3                                    | 1915108.9 | 196226.86609 | 446.97982087 | 0           | 0           | 1718435.1 |  |
| ı | 4                                    | 6927415.4 | 2675820.9012 | 158071.72354 | 182251.45   | 129530.3984 | 3781740.9 |  |
| ı | 5                                    | 33853.632 | 8919.4030041 | 14980.256942 | 4523.2616   | 3214.788535 | 2215.9222 |  |
| Ш |                                      |           |              |              | <del></del> |             |           |  |





### **SPARROW SAS Software**

Execution run times for new SPARROW code:

New Zealand Waikato (5,000 reaches) ~ 0.30 minutes

National (65,000 reaches) ~ 10 minutes



#### **Evolution of SPARROW Calibration Software**



#### SPARROW 2.0



#### SAS calibration / prediction software

- New revisions completed and on-going to national code
- Document and support single source of software maintained by the national SPARROW group

GIS methods and software –variety of approaches—will likely continue

#### **SPARROW SAS Software Enhancements**

#### Remain to be tested (\*\* = needs to be implemented)

- 1. Delivered flux (incremental, total, sources)
- 2. Parameter and prediction bootstrapping
- 3. Prediction confidence intervals
- 4. Model diagnostics:
  - a. Leverage statistic
  - b. Standardized residuals
  - c. Variance inflation factors (VIFs) \*\*
  - d. Parameter correlation matrix \*\*
  - e. Influence statistics (Cooks D) \*\*
  - f. Mallow's Cp \*\*
- 5. Weighted observations
  - -- "measurement error" -- load estimation error
  - --Hetereoscedasticity \*\*

